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ABSTRACT:

This paper deals with the retrieval of vanishing points in uncalibrated images. Many authors did work on that subject in the computer
vision field because the vanishing point represents a major information. In our case, starting with this information gives the orientation
of the images at the time of the acquisition or the classification of the different directions of parallel lines from an unique view. The
goal of this paper is to propose a simple and robust geometry embedded into a larger frame of image work starting with an efficient
vanishing point extraction without any prior information about the scene and any knowledge of intrinsic parameters of the optics
used.After this fully automatic classification of all segments belonging to the same vanishing point, the error analysis of the vanishing
points found gives the covariance matrix on the vanishing point and on the orientation angles of the camera, when using the fact that
the 3D directions of lines corresponding to the vanishing points are horizontal or vertical. A validation of estimated parameters with
the help of the photo-theodolite has been experimented that demonstrate the interest of the method for real case. The algorithm has
been tested on the database of a set of 100 images available on line.

1 INTRODUCTION

In the conical geometry characteristic of human vision, or of pho-
tography, the parallel lines in the object space result in the image
as pencils that intersect on vanishing points. Therefore to ev-
ery vanishing point, a 3D direction is associated. The intersec-
tion of the lines in the image, corresponding to a given vanishing
point, is mathematically an ill-conditioned problem. The various
lines intersect with very small angles, which badly conditions the
classic model of intersection. Another problem is a problem of
classification, namely which segment is associated to which van-
ishing point. Since the years 80 many authors have tried to pro-
vide solutions to these two difficulties. In order to summarize
the difference between all these approaches, one could say that
it resides in the differences of parameter spaces for modelling
and resolving the problem. Several types of spaces for mod-
elling exist. One of the most widely known is the accumulation
space on the Gauss sphere, that has been introduced by Barnard
(Barnard, 1983) and that since then has been used, modified,
and optimized by many different authors (Magee and Aggarwal,
1984)(Shufelt, 1999). Other authors used other accumulation
spaces using the Hough transform (Lutton et al., 1994)(Quan and
Mohr, 1989)(Tuytelaars et al., 1998). The modelling can also be
performed in the space object, which was used by many authors
(Antone and Teller, 2000). Then must be mentioned all authors
who have modelled the problem in the 2D space of the image
(van den Heuvel, 1998)(Brauer Burchardt and Voss, 2000)(Schaf-
falitzky and Zisserman, 2000)(Rother, 2002). In general this kind
of approach requires the use of probabilistic models (Almansa et
al., 2003). Most methods of extraction of vanishing points are
composed of 2 steps, one for the vanishing points detection, and
another for the association of the different directions of the seg-
ments in the image with these vanishing points. The method pre-
sented in this paper has for parameter space an unit sphere with-
out accumulation process. It works in only one step, so that the

extraction is made simultaneously with the classification. The de-
tails of the geometry framework used in the method is described
in the section 2. The different steps of the algorithm are de-
scribed in the section 3. In order to have an assessment of the
uncertainty on the location of the vanishing point, a very detailed
covariance analysis has been done, and is the topics of the section
4. The section 5 illustrates the results of classification directly
on some images taken as examples. Finally, in order to compare
with a ground truth, a precise measure instrument that can give
the orientations of the image acquisition was necessary, and thus
a photo-theodolite (camera mounted with a precise goniometer)
has been used.

2 GEOMETRIC FRAMEWORK

In this section, is presented the geometry on which the algorithm
is based. The origin O is chosen at a distance D from the image
plane. The axes Y and Z are parallel to the axes of the image, and
thus the X axis is perpendicular to the image plane.

l1 and l2 are the extremities of a given segment in the image. If
this segment belongs to a family of segments who converges on
the vanishing point V, one is interested in the corresponding fam-
ily of planes of the space who pass through O, each containing
one of these segments. V being on the line carrying the segment,
a given plane contains therefore always V, and therefore the line
OV too. For each of this family’s planes, the normal vectors pass-
ing through O are all coplanar, because they are included in the
plane passing by O and perpendicular to OV (Figure 1). And the
normal in O to this last plane, (that we call ”vanishing plane” in
the present paper for this reason), intersects the image plane in
the vanishing point V. Thus the extraction of V may be obtained
through the research of the best plane containing all the extrem-
ities of normal vectors to the previously defined planes, each of
them containing O, V and a given segment. It is important to note
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Figure 1: Geometry of the image and the vanishing plane, whose
normal in O intersects the image on the vanishing point V

that if O is chosen at the optic centre, and therefore if D is the fo-
cal length F, then the plane previously defined is the one that,
in the literature of computer vision, is often called the interpreta-
tion plane (Barnard, 1983) (Weiss et al., 1990)(Antone and Teller,
2000). But the present work doesn’t stand in this very particular
situation, which requires a previous knowledge of the intrinsec
parameters of the camera. Here the point O is taken in an arbi-
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Figure 2: Illustration of the geometric features used in the algo-
rithms : the set of planes built on the segments of the image and
containing O intersect in V, whatever the position of O.

trary way (Figure 2), obviously outside of the image plane, and
for simple reasons of numeric stability, at a reasonable distance
from the centre of the image. This remark is important, because
the algorithms presented here require no prior knowledge of the
optics used to extract correctly the points V. It works in the same
way as the eye does, when it looks at an image, and rebuilds the
vanishing points mentally without knowing the elements of the
optics used to get this image.
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Figure 3: Definition of the reference system on the image
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Figure 4: Typical urban scene (a). On (b), the representation of
the corresponding ends of vectors, normal to the planes includ-
ing each segment and the origin O : one clearly sees the clouds
of points, approximately along great circles on the unit sphere
centered on O. There are as many circles as vanishing points.

X sin θ + Y cos θ = ρ. (1)

N is the vector, passing through O, normal to the plane formed
by l1, l2 and O. Each line of the ZY plane is defined by its polar
equation (equation 1) as a function of ρ and θ, polar coordinates
of every segment in the image plane (using the origin of the im-
age) (Figure 3). The normal vector to this plane can be calculated
directly from ρ and θ. The extremities of all these normalized
normal vectors lie therefore on a unit sphere (equation 2).

Nx = − ρ√
D2 + ρ2

Ny = − D sin θ√
D2 + ρ2

Nz = − D cos θ√
D2 + ρ2

(2)

That way, a mapping on this unit sphere has been performed (Fig-
ure 4). Some authors have used this geometry. But all of them
took their origins on the optic centre, therefore at a distance F
of the image, which requires the knowledge of the intrinsic pa-
rameters. Here, the problem of detection of the different families
of directions of the image corresponding to parallel directions of
the object space, is converted into the detection of all meaning-
ful planes formed by the extremities of the normal vectors issued
from O. In the next parts of this paper the extraction method of
the planes is deepened. It is completed by an error analysis on the
results obtained for the vanishing point.

3 ALGORITHM OF EXTRACTION OF THE
VANISHING PLANES

Four important points of this algorithm can be mentioned:
1 - there is no need to make any hypotheses on the number of
vanishing points present in the image,
2 - the algorithm is robust and use levels that adapt to the preci-
sion of detection of the segments,
3 - all vanishing points are detected; there is possibly an over-
detection, but no under-detection,
4 - no prior information on the optics intrinsec parameters is re-
quested.
The basic algorithm for the detection of the vanishing points re-
quires two steps, followed if needed by an error analysis of the
vanishing point.
The main steps are:
1 - Segments detection in image,
2 - Calculation of the normal vectors and extraction of the van-
ishing planes,
3 - Analysis and error propagation on the vector of vanishing
point.



3.1 Detection of segments in the image

As it is the case for every algorithm of extraction of vanishing
points, the first step is the detection of the image segments. Many
algorithms of detection of segments are available (Burns et al.,
1987)(Deriche, 1987)(Deriche et al., 1992). In the proposed method
the detection of the segments is based on the Deriche Vaillant al-
gorithm (Deriche et al., 1992). The advantage of this approach is
that it can produce for every segment a covariance matrix for the
line carrying this segment. The equation of this line is expressed
in polar coordinates (ρ and θ) and a covariance matrix is provided
on these parameters. But any other segments detector may also
be chosen.

3.2 Calculation of the normal vectors and extraction of the
vanishing planes

Once the segments detected on the image as well as the lines car-
rying these segments, the normal vectors can be easily calculated
(equation 2). Now the problem lies in the extraction of the dif-
ferent planes in a set of clouds of points. For overcoming this
problem, a method inspired of the RanSac(Fischler and Bolles,
1987) was implemented. RanSac is a robust estimator based on a
random sample principle. All necessary parameters for the use of
the RanSac are described briefly in (Fischler and Bolles, 1987),
this article being adapted for an unique cloud of points. But in the
case of the vanishing planes, several clouds of points coexist. It is
therefore necessary to bring some changes to the RanSac method.
The main changes concern :
- The error tolerance for establishing datum/model compatibility
t (Algorithm 1)
- The maximum number of attempts to find a consensus set m
- The lower bound on the size of an acceptable consensus set T
The principle of the algorithm is the following one:

1. - 2 normal vectors are randomly selected (N1, N2)

2. - Calculation of the vectorial product between the 2 normal
vectors, the vectorial product of N1 with N2 defines the nor-
mal to the plane (Vp)

3. - The whole set of normal vectors is browsed to find other
normals coplanar with the two first ones, with the condition
that Vp is orthogonal to them with a tolerance t (Algorithm
1)

4. - After m iterations the plane that aggregated the biggest
number of normal vectors is kept as a vanishing plane

5. - The normal vectors classified in a plane are withdrawn
from the main set

6. - The whole previous process is repeated until there are only
4 normal vectors left in the set. So that here, T = 4

7. - In each set of normal vectors selected, the best plane is
computed by a classical least-squares adjustment.

The number of samples cannot be calculated conventionally with
the probabilistic method given by Fischler and R. C. Bolles (Fis-
chler and Bolles, 1987) because no prior knowledge is available.
It is impossible to say in advance what percentage of points is
good and what percentage is not. A normal vector belonging to a
plane is a ”inlier” for its plane and will be considered an outlier
for another plane, it is therefore impossible to decide on a strict
probabilistic basis. In an empiric way, it has been found satisfac-
tory to take for m the half of the number of segments of the image.
So the choice of m adapts himself to the image, and therefore the
process remains entirely automatic.

Algorithm 1 Calculate tolerance (t) for the RanSac
Sum ⇐ 0
for i = 0 to size of the set of normal vectors do

Calculate covariance matrix of N deduced from covariance
matrix of θ and ρ∑

Nx,y,z
= J

∑
θ,ρ J t {J is the matrix of partial derivatives

of N (equation 2) with respect to θ and ρ}−→
δN =

−→
N + (σNx , σNy , σNz )

αi = | arccos
(

(N|δN)
||N||·||δN||

)
|

Sum ⇐ αi + Sum
end for
Calculate tolerance (t)
return t ⇐ median of Sum

4 ERROR PROPAGATION ON THE VANISHING
POINT

After the step of the classification of the planes, it is important to
be able to quantify, by a covariance analysis, the uncertainty of
the vector of the vanishing point. The impact of the uncertainty
of the normal vectors calculated on the vector of the vanishing
point is thus computed. The normal vectors are the observa-
tions. It is therefore necessary to adjust the best plane fitting these
normal vectors while taking in account their uncertainties. The
process of least squares used here, using the covariance matrix
of the observations, is the method of Helmert-Gauss ((Helmert,
1872)(Cooper, 1987)). It is supposed that all error on the nor-
mal vectors (N) have a Gaussian distribution. The cost function
γ here is the square of the distance between the extremities of the
normal vectors and the plane that passes through the origin:

(aNx + bNy + cNz)
2 − d2 = γ. (3)

a, b, c are the components of the extremity of each vector of the
normal to the plane. The aim is to estimate and to calculate the
covariance matrix on a, b and c. The method of Helmert Gauss is
formulated here in the following way:

Ax + Bv = b. (4)

A is the Jacobian matrix of γ with respect to the unknown param-
eters (a, b and c), B is the Jacobian matrix of γ with respect to the
unknown observations (Nx , Ny and Nz). The resolution of this
system is performed by the minimization of vtWv, v being the
vector of the observations. The resolution of the system uses the
multiplier of Lagrange in an iterative way. For each iteration the
vectors x and v are calculated. The convergence is obtained when
the values don’t evolve beyond 1 pixel. Once obtained the covari-
ance matrix on the vector of the calculated vanishing point, one
propagates it on its intersection with the image plane. Thus an
assessment of the uncertainty on the localization of the vanishing
point in the image plane is got.

5 RESULTS AND ASSESSMENT

In order to show some examples of results of the classification
of the different directions of lines in an image, 2 examples in the
images data base have been chosen. The first image is the Louvre
pyramid in Paris (Figure 5), chosen as it contains a lot of families
of directions of parallel lines. In this image the vectors of van-
ishing points have the same colour as the extremities of normal
vectors belonging to the same plane. A second image (Figure 6)
shows that the algorithm is robust and its parameters tune them-
selves automatically with regard to the quality of detection of the
segments.



Figure 5: Typical result on an image of the Louvre pyramide,
Paris. The different families of parallel lines are displayed along
with the end of the extremities of normal vectors issued from O
relative to each corresponding segment, with the same colour.

Figure 6: Automatic classification of segments.

The possible methods of assessment for the algorithms of au-
tomatic vanishing points extraction are to be sorted. One can
certainly value their efficiency in terms of numbers of vanishing
points found, but no reference method exists to find the correct
value except by visual manner. Besides, to find a conclusive sta-
tistical value is not that obvious: it is quite simple to bias the
results, either by doing the tests on images of neighbouring ge-
ometries (which induces a bias on the random character of the
sample), either by choosing too simple images (all results are
then favourable), or unusually complex, such of unclassical build-
ings where all lines are curves (and the results will be abnormally
bad). In the present case, the assessment was based on about one
hundred relatively varied images (Figure 7), for which the num-
ber of vanishing points found (ranging from 0 to 5 according to
the visual inspection of images) was satisfactory. An important
set of images, which served to deepened tests, has been put on
line on the site http://mahzad.kalantari.free.fr/pdf.htm. One can
also try to measure in an independent and more precise way the
coordinates that one should find for the vanishing points, and then
two options are possible: to work on synthesis images, or to use a
photo-theodolite. This last one permits to get images with a cali-
brated camera, and the orientation of the optical axis is measured
with an extreme precision thanks to the theodolite that is included
in the mount of the camera. The validation has been led in the fol-
lowing way : eight successive images have been taken of a given
scene, presenting a building whose three vanishing points corre-

Figure 7: Exemple of image extrated from the database
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Figure 8: Definition of the angles ω, φ and κ of the object space,
showing the relations with the angles H and V of the photo-
theodolite.

spond to orthogonal directions, with different angles of view. The
angles of the photo-theodolite have been recorded every time.
The eight images have been processed in order to extract the van-
ishing points in an automatic way. The angles φ and κ, computed
from (Patias and Petsa, 1993) using the values of focal length and
position of the optic center as results of a calibration, are bound
directly to the angles H and V measured on the theodolite. In-
deed, unlike the situation that prevails for the automatic recovery
of vanishing points using the present algorithms, it is necessary,
when exploiting the vanishing points in order to compute these
angles, to use the intrinsic parameters. The three angles com-
puted for each image follow the classical denomination in pho-
togrammetry (ω, φ and κ), and their geometrical significance is
presented in the Figure 8. The discrepancies of orientation be-
tween the successive images have been compared depending on
whether one exploits the vanishing points or the values measured
by the theodolite (considered as a reference). The standard de-
viations for the discrepancies on the angles φ and κ have been
obtained on a set of eight images of the same scene under differ-
ent angles of view (Table 1). The value obtained is 0.2 mrd for
the component φ, that corresponds to the planimetric orientation
of the facades observed. It is equivalent, to a distance around
10 m (mean distance from the camera to the facades) to an error
of two mm, which is therefore a satisfactory order of magnitude.
One deduces that the algorithm works with a good precision on
this type of scene. The discrepancies are higher, around 10 mrd,
with the vertical angles extracted from the vanishing points κ, as
compared with H angles. This is due to the high uncertainty on
the intersection of the images of the vertical lines of the object,
the consequence being to provide a comparably poor value for κ.

σφ(mrd) σκ(mrd)
0.2 10

Table 1: Standard deviation of φ and κ

6 CONCLUSION

A new algorithm, based on very simple geometric considerations
and strongly helped by a very efficient RanSac-type methodol-
ogy of classification, allows for a fully automatic extraction of
the vanishing points available in a given image. This method
is fully independent of any preliminary knowledge of the intrin-
sec parameters of the optics used, which facilitates its use in a
wide set of practical situations. The computation time required
for classical urban scenes ranges around one second with a clas-
sical PC, which is adapted to most possible applications. On an-
other hand, a new methodology for testing the algorithms has also
been developed, based upon the use of a photo-theodolite. This
has provided a very efficient way to check their accuracy, which
appears as satisfying. Generally speaking, this method may find



some vanishing points in excess (artifacts of lines that intersect
without being the images of parallel lines), but at least finds all
the true vanishing points.
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